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DNA, protein, and protein

complex

Our body has a 101! (hundred billion) cells.

replication
(DNA -> DNA)
DNA Polymerase
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transcription
(DNA -> RNA)
RNA Polymerase
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translation
(RNA -> Protein)
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A protein complex is a
set of proteins connected
by protein-protein interactions



Problem: Protein complex
prediction

Input: a protein-protein interaction (PPI) network (edge-weighted
undirected graph).




Contents

1. What's the protein complex prediction problem?

2. First challenging difficulty — Small protein
complexes are the majority

3. PPSampler2 (Proteins’ Partition)

4. Second challenging difficulty — Known complexes
are overlapped with each other.

5. RocSampler (Regularizing overlaps of complexes)
Concluding remarks



First challenging difficulty

e Small complexes (of size 2 and 3) are the majority
of known complexes

e CYC2008 (yeast protein complex database) has 408
complexes.

e 172 (42%) are of size 2.
e 87 (21%) are of size 3.
* A human protein complex database has similar ratios.

* It is relatively difficult to identify small complexes.




Observation: Dense subgraphs are often
overlapped with known protein complexes
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Typical approach: cluster-expansion method | affinity:

* cohesiveness

1 ) 2 * random walk
i @ 2 o
. =
stopped by a

\ simple criterion

cluster-expansion process

~

\ /

Every protein
or PPl forms an
initial cluster

post-processing for overlapping clusters

This has no mechanism to control the sizes of predicted clusters



Contents

1. What's the protein complex prediction problem?

2. First challenging difficulty — Small protein
complexes are the majority

3. PPSampler2 (Proteins’ Partition)

4. Second challenging difficulty — Known complexes
are overlapped with each other.

5. RocSampler (Regularizing overlaps of complexes)
Concluding remarks



How to predict small complexes

The distribution of sizes of known A human protein

complexes is approximated by a
power-low distribution. complex database has
the same property.

' ‘frequenc‘y VS. size .
150 — Power-law regression , * This property can be

_ used as a prior
e 100 knowledge.
=1
o
= 50/

Oi\

size



Design of a term for regularizing the
distribution of sizes of predicted clusters

A regularization term gives a force to fit the distribution of sizes of predicted clusters to a
target power-law distribution.

S_y
vr() = yomax ¢y
: two-side truncated power-law distribution
Dy(s) = [{x € X||x| = s}
+(s) =
X
: fraction of predicted clusters of size s
Smax
Z hclu—size,s X,v)
s=2

where

hetumsizes 1) = (1,(5) = Yx(5))’



Widita and Maruyama BMC Systems Biology 2013, 7(Suppl 6):514 .
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PPSampler2: Predicting protein complexes
more accurately and efficiently by sampling

Chasanah Kusumastuti Widita', Osamu Maruyama®"

 Asample, X, is a partition of all proteins in an
input PPl network.

* Any overlaps are not allowed.

Samples are generated from P(X) by a Metropolis-Hastings algorithm

v o exp ~ L0




Scoring function f(X) =

Optimization term

Rety—den(X) Sum of the densities of predicted clusters

Regularization terms Two Boolean basic constraints on predicted

clusters:
+b(X)

1. Vx€eX, |x| < Smax
2. All x € X should be connected via PPIs.

Minimize the number of proteins of the
predicted clusters;

+Cpro—num : hpro—num(X)

| —— 0§ I (/1 — U X )2

XEX

where A is a given target.

Smax

+Ceiyu—size hclu—size,s (X,v)

S=2

force of fitting the distribution of the sizes of
predicted clusters to the power-law
distribution of the scaling-exponent y




hclu—
w(x)
density(x) =
Jlxl
where

w(x) = Z w (i, v)
hclu—den(X)
= — z density(x)

xXeX

* The standard density is

divided by
x| - (x| = 1)/2.

* ./|x| is used to alleviate

excessively severer
evaluation of a larger
cluster.



b(X)

* Let x be a subset of proteins, called a predicted
cluster.

 Constraint 1: |x| < S,,.x (Max size of predicted
clusters)

e Constraint 2: the vertex-induced subgraph of G by
X is connected

. b(x) = 0 if both constraints are satisfied
o0 otherwise

* b(X) = ZxEXb(x)



Proposal distribution Q (X'|X)

An empty singleton / \
X cluster of u is
/ \ created
probabilistically
u cluster
cluster
Choose a protein u randomly, and @
choose one of the two options randomly
cluster
Randomly choose another cluster
according to the PPI weights of

neighboring proteins K /

X' is also a partition.




Performance comparison
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Performance comparison on size-
2 complexes by exact matching
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Second challenging difficulty

Some known complexes are overlapped with each
other.

CYC2008 has 216 overlaps between two complexes
with 112 complexes.

S S YA Y Y S

Frequency 151 22 9 13 1 10



Typical approach: cluster-expansion method | affinity:

* cohesiveness

1 ) ) * random walk
. @ . . etc
. =
stopped by a

k simple criterion

cluster-expansion process

~

\ /

Every protein
or PPl forms an
initial cluster

post-processing for overlapping clusters

This approach, only by chance, finds good overlapping clusters.
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Ry —ais (X): Term regularizing
overlaps between predicted clusters

My ' = min{|x|, [x|}

(] (x, x") m, . <3and|xNx'| <1,
|lx N x'|
heru—ais (6, x") = 4 orm, .’ = 4 and <p
' My 5!
. otherwise
where Parameter § € {0.2,0.3,0.4} is
J(x, x ) = | Jaccard index) optimized for a PPl network

hepy—ais(X) = Z hery—ais (x, x")

xX,X1eX



Our new sampler: RocSampler
(Regularizing Overlaps of Clusters) [2016]

The scaling exponent of the power-law is also
optimized by sampling

A new term regularizing overlaps of predicted clusters
is designed

Samples are generated from P(X,y) by Metropolis-Hastings
algorithm-based simulated annealing algorithm.

/\ — (_ fX, )/))

T




Scoring function f(X,y) =

Optimization term

Rety—den(X) Sum of the densities of predicted clusters

+b(X) Two Boolean basic constraints on predicted

clusters

Minimize the number of proteins of the
predicted clusters; hyyo—num (X) = [Uyex x|

+Cpro—num ’ hpro—num(X)

Smax force of fitting the distribution of the sizes of
s _ predicted clusters to the power-law
tCelu-size hety-size,s(X,v) distribution of the scaling-exponent y

s=2

+Chy : hhy()/) Prior of y; hhy(y) — (]/ — ]/0)2 with yo = 2.5

+Cetu-ais * Retu-ais(X) Penalize overlaps between predicted
clusters

Regularization terms




Simulated annealing

TO — 1
T, = T,_; X 0.999999

If T is replaced with T}, the Metropolis-Hastings
algorithm turns to be a simulated annealing
algorithm.



Proposal function of Metropolis-
Hastings algorithm

1. Randomly choose one of the 4 options
1. Randomly add a new clusters of size 2to X
2. Randomly remove a cluster of size 2 in X
3. Randomly add a new protein to a cluster in X
4. Randomly remove a protein of a clusterin X

2.y =min{1071%,y + £} where ¢ ~ N(0,0.001)



Computational experiment

WI-PHI 5,953 49,607 16.7

Collins 1,622 9,074 11.2 Top 9,074
Krogan core 2,708 7,123 5.3 0.273
Krogan extended 3,672 14,317 7.8 0.101
Gavin 1,855 7,669 8.3 5

Parameter values of protein complex prediction methods are optimized.



Performance comparison on
WI-PHI
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Estimated value of ¥

* The scaling exponent of the power-law regression
curve of CYC2008 is 2.02.

* The estimated value of y is 1.91.
* Note that PPSampler2 uses y to be 2.



Difference in performance between PPSampler2 and RocSampler

Precision:
PPSampler2: 145/396 = 0.37
RocSampler: 147/281 = 0.52
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PPSampler2 predicted more
(insignificant) small clusters




On Collins2007
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On Gavin2006
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On Krogan2006Core
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On Krogan2006Extended
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On BioGRID (PPlIs are unweighted)
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On Collins PPIs
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Concluding remarks

* First challenging difficulty
e Small protein complexes are the majority
* PPSampler2 (Proteins’ Partition)

* We designed a term for fitting the distribution of sizes of
predicted clusters to a power-law distribution.

* Second challenging difficulty
 Known complexes are overlapped with each other
* RocSampler (Regularizing overlaps of complexes)

* We designed a term for regularizing overlaps between
predicted clusters.

* But overlapping clusters are found only on the Collins
PPl network among 5 networks.

* Collins PPI network might has a special feature.
* The current regularizer for overlaps is on the way?
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