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Statistical inference

You lost a book yesterday.

A = “The book | lost
yesterday should be on the
desk of my house.”

‘ Ais 80%!
P(A) = 0.8.

Degree of belief.



Statistical inference

You guess today’s dinner.

A = “The dinner today
might be mapo dofu.”

A is 10%!

P(dinner today = mapo




Bayesian inference

Technique of statistical inference using a posterior
probability distribution

P(6|D)

0 : random variable representing parameter, hypothesis
. target objects to be estimated

D : random variable representing observed data
: Observed data



Discrete random variable
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Continuous random variable
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A probability is a function
satisfying

0<Px)<1

ZP(x) —1



Conditional probability

P(B|A) (= P4(B))

- P(ANB)
- P(4)




P(ANB)
P(A)

P(B|A) =

5

P(B) = !

~ 10

B 3
P(AnB) :1—0

P(AnB) 3 10 3
P(4) 10 5 5

P(B|A) =

— Compare the direct calculation of
P(B|A)




Conditional probability
P(B|A)

(= PA(B))

_ P(ANnB)
- P(4)

Multiplication theorem
P(A N B)

= P(B|A)P(A)



Bayes’ theorem

Recall multiplication theorem:
P(ANnB) =P(B|A)P(A)

~ P(ANB) =P(BnA) = P(A|B)P(B)

The two R.H.Ss are equal:
P(A|B)P(B) = P(B|A)P(A).

P(A|B)P(B)

~ P(B|A) = P(A)




Key concepts of Bayes’ theorem

Bayes’ theorem

b0l < PLIOPE)

P(D)
0 : parameter, hypothesis (representing causes)

. target object to be estimated
D : observed data

P(6|D)




Bayes’ theorem

P(D|6)P(0)
P(D)

P(O|D) =

0 : parameter, hypothesis (cause)
D : observed data

* P(6|D)
e posterior probability (EEHEZXR) .
* interpretation: probability of cause 8 when event D happens.

* P(D|6)
« likelihood function (FCREREEK)
* interpretation: likelihood of D under 6.

* P(6)
* prior probability (SBRIHESR) |
* interpretation: a general degree of belief in 6.



Usefulness of Bayes’ theorem

Current knowledge: Updated knowledge:
P(D|6)P(6)
P(6 P(O|D) =
(6) (61D) = =573
D is
observed
(6) P(6|D)




Example: Diagnosis



Example: Diagnosis

w — »n O >3 0m v — QO

negative 10%

positive 90%

negative 80%

positive 20%

Affected
EE
0.001%

Unaffected
JEERE
99.999%

You are diagnosed positive.

Question 1:
Do you believe that you are affected?

17



Example: Diagnosis

w — »n O >3 0m v — QO

Negative 10%

Positive 90%

Negative 80%

Positive 20%

Affected
EE
0.001%

Unaffected
JEERE
99.999%

You are diagnosed positive.

Question 2:
What'’s the probability that you are affected?

Luckily we have statistical data:

A = Affected

U = Unaffected

P = Positive

N = Negavive

D = {P, N} : random variable for diagnose
R = {A, U} : random variable for real state

P(R = A) = 0.00001
P(R = U) = 0.99999
P(D=P|R=A4)=09
P(D =N|R = A4) = 0.1
P(D=PIR=U) =02
P(D=N|R=U)=0.8
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Example: Diagnosis

w — »n O >3 0m v — QO

Negative 10%

Positive 90%

Negative 80%

Positive 20%

Affected
EE
0.001%

Unaffected
JEERE
99.999%

A = Affected

U = Unaffected
P = Positive

N = Negavive

D = {P, N} : random variable for diagnose
R = {4, U} : random variable for real state

P(R = A) = 0.00001
P(R = U) = 0.99999
P(D=P|R=4) =09
P(D = N|R = A4) = 0.1
P(D=P|R=U) =02
P(D=N|R=U)=0.8

Which is larger?
P(R = A|D = P)
P(R=U|D = P)
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P(R = A) = 0.00001
P(R = U) = 0.99999
P(D=P|R=A4) =09
P(D =N|R = 4) = 0.1
P(D=P|R=U)=0.2
P(D=N|R=U)=0..8

P(R=A|D = P) =

P(R=U|D = P) =

Using Bayes’ theorem

P(D = P|R = A)P(R = A)
P(D = P)

~0.9-0.00001 0.000009
~ P(D=P) P =P

P(D = P|R = U)P(R = U)
P(D = P)

~0.2-0.99999 0.2
~ P(D=P) ~ P(D=P)
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Bayesian updating

* 0: probability of getting
the head of a coin when
it is flipped.

e Evaluate the value of @ as
posterior probabilities!

e Likelihood function:

* Bernoulli ()L XX—
S distribution with
parameter

H: Head

T: Tail

p(H|B) = 6
p(T|6) = 1-06




Initial step of Bayesian updating

)

)

* No prior knowledge,
assume a prior

* [tis assumed
p(0) = constant.

~p(0) =1
p is a uniform
distribution.



Current (initial) prior distribution
p(6) =1

This means we have no information on 0.



Suppose we have event
D, : the head appeared

Find the posterior distribution p(6|D;)
p(0|D;) x p(H|O)p(6) =0 x1 =10

Normalization:

fo p(HI0)p(6) db = [

0

1 1 1
0do = [—«92]
2 0

We have
p(0|D,) = 26.

1
2



Posterior distribution p(8|D;) =
26

08—~

04~

02~

Reflecting D: the head appeared,
the higher 8 is, the higher the probability is



Suppose we have event
D,: the head appeared

p(6|D,,D;) Normalization: .
o p(D,|6 )p(6]D,) 1 2 2
ooy | 2000 =20%] =3
=60 x20=20"% 0 0
The latest posterior
distribution, p(8|D;) is Thus, we have
used as the prior ﬁ? (6|D,, Dy)
distribution in this step P(Dz 6)p(61D;) _ 392
because it is the best p(D,|D;) B

knowledge of 6.



Posterior distribution
p(6|D,, D) = 3674

25

05~

This graph looks reasonable because we had D; = D, = head.



Suppose we have event
D;: the tail appeared

Find the posterior p(0|D3, D5, D;)

p(elDSIDZJDl)
x p(D3|0)p(6|Dy, Dy)

= p(T|6)p(8|D,, Dy)
=(1—-6) x 36%

Normalization:

1 2 11
J(1—9)X302d9: 93 —Zp4| ==
0 4 0 4

We have
p(8|D3, Dz, Dl) —_ 12(1 — 6) X 62.



Posterior distribution
p(@ng, Dz, Dl) — 12(1 — H) X 62
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Let £(8) = 12(1 — 0)62 = 12(62 — 63).
£1(8) = 12(26 — 362) = 120(2 — 36).

2
f©)=026=073

The fact that the maximum value of
L 2
the posterior is given at 8 = 3

coincides with the current
observations: H, H, T.



Suppose we have event
D4: the tail appeared

Find the posterior p(6|D,, D5, D,, D)
p(9|D4I D3,D2, Dl)
x p(D,4|60)p(6|D3, D2, D1)

— p(TlH)p(9|D3,D2,D1)
=(1-6)x12(1-8) x 62

After normalizing it, we have
p(0|D,,D3,D,,D;) = 30(1—8) ?x 0%,



Posterior distribution
p(0|Dy, D3,D,,D;) = 30(1 — ) X 6%

Let f(8) =30(1 —0)2%x 602 =30(0% — 263 + 6%)
1
f'(0) =30(20 — 6602 + 463) = 600(1 — 36 + 26%) = 1200 <9 — 5) (6 —1).

1
f(0)=0e6=0:,1



Data: HHTT
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We can integrate old and
new data by Bayes’
theorem. It is difficult in the
traditional statistics.



