Introduction to Bayesian Inference

Osamu Maruyama

http://www.design.kyushuu.ac.jp/~maruyama/summer-school-2019.pdf

Contents

- 1. Bayes' theorem
- 2. Example: diagnosis
- 3. Bayes updating

Statistical inference

You lost a book yesterday.

A = "The book I lost yesterday should be on the desk of my house."

A is 80%!

P(A)=0.8.

Degree of belief.

Statistical inference

You guess today's dinner.

A = "The dinner today might be mapo dofu."

A is 10%!

P(dinner today = mapo

Bayesian inference

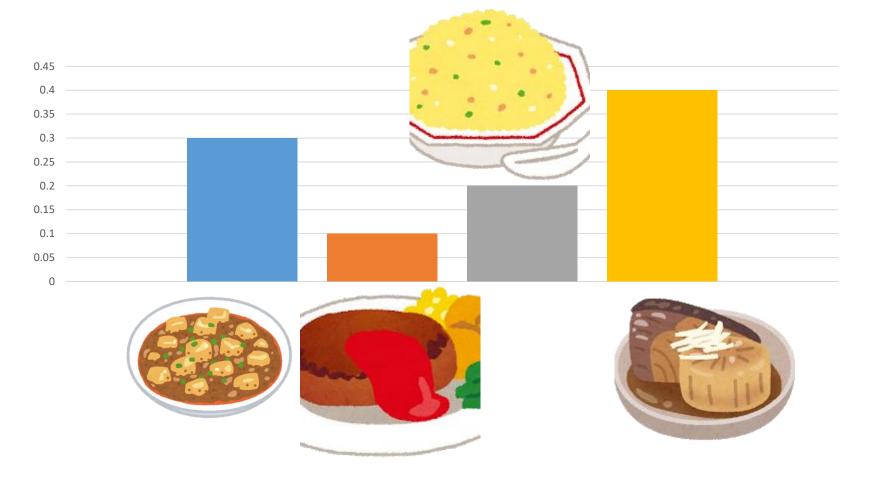
Technique of statistical inference using a posterior probability distribution

$P(\theta|D)$

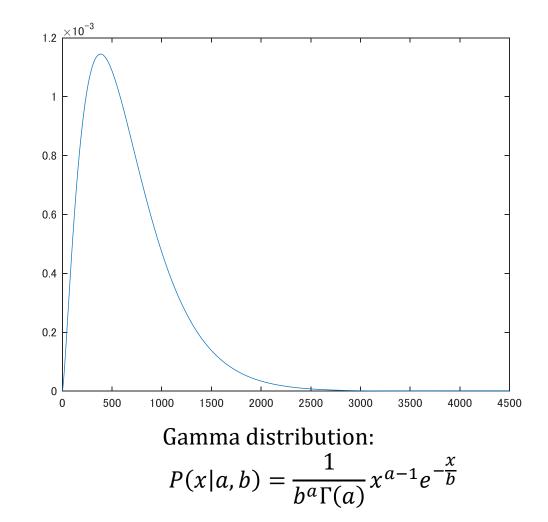
 $\boldsymbol{\theta}$: random variable representing parameter, hypothesis

- : target objects to be estimated
- **D** : random variable representing observed data
 - : Observed data

Discrete random variable



Continuous random variable



A probability is a function satisfying

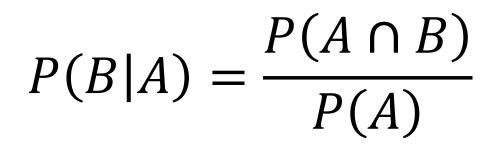
 $0 \le P(x) \le 1$

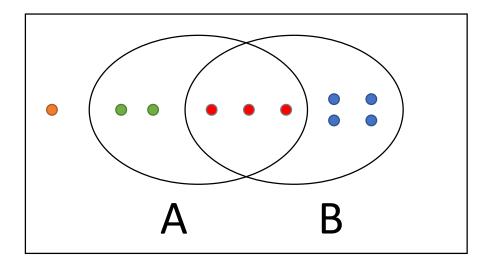
 $\sum_{x} P(x) = 1$

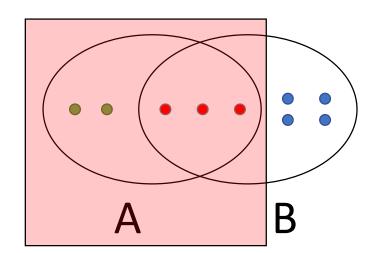
Conditional probability

$P(B|A) \quad \left(=P_A(B)\right)$

$=\frac{P(A\cap B)}{P(A)}$







$$P(A) = \frac{5}{10}$$
$$P(B) = \frac{7}{10}$$

$$P(A \cap B) = \frac{3}{10}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{3}{10} \cdot \frac{10}{5} = \frac{3}{5}$$

 $\leftarrow \quad \text{Compare the direct calculation of} \\ P(B|A)$

Conditional probability P(B|A) $\left(=P_A(B)\right)$

Multiplication theorem

 $P(A \cap B)$

= P(B|A)P(A)

 $=\frac{P(A\cap B)}{P(A)}$

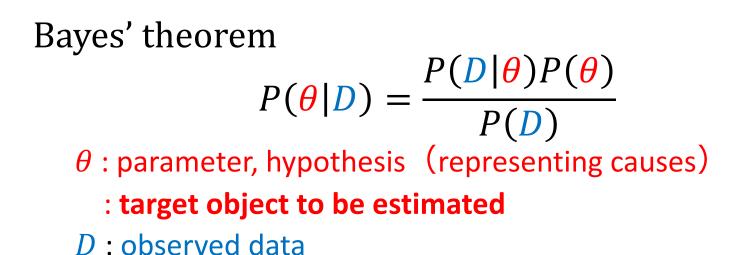
Bayes' theorem

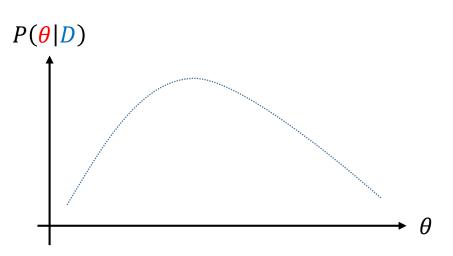
Recall multiplication theorem: $P(A \cap B) = P(B|A)P(A)$

$\therefore P(A \cap B) = P(B \cap A) = P(A|B)P(B)$ The two R.H.Ss are equal: P(A|B)P(B) = P(B|A)P(A).

$$\therefore P(B|A) = \frac{P(A|B)P(B)}{P(A)}.$$

Key concepts of Bayes' theorem





Bayes' theorem

$$P(\boldsymbol{\theta}|\boldsymbol{D}) = \frac{P(\boldsymbol{D}|\boldsymbol{\theta})P(\boldsymbol{\theta})}{P(\boldsymbol{D})}$$

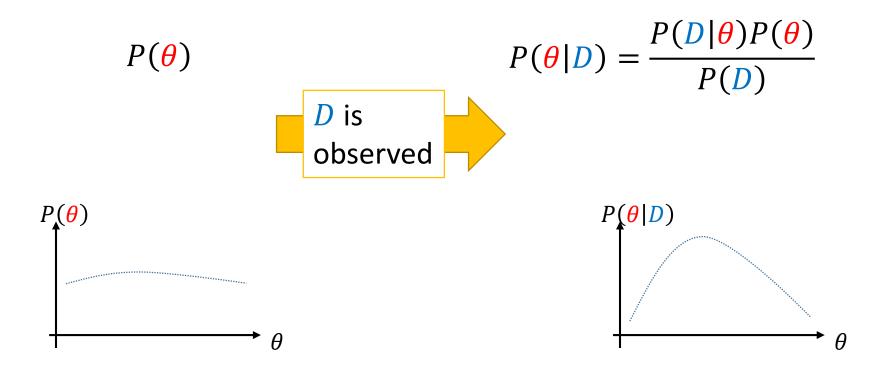
 θ : parameter, hypothesis (cause)

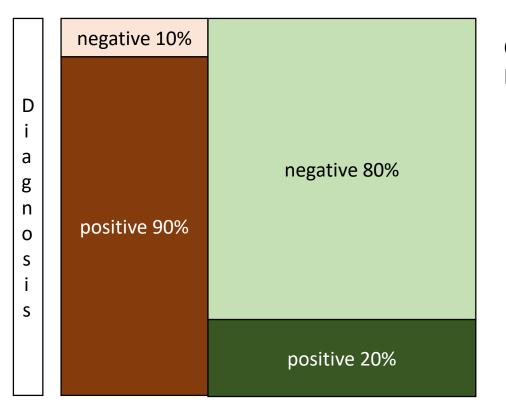
- **D** : observed data
- $P(\theta|D)$
 - posterior probability (事後確率).
 - interpretation: probability of cause θ when event *D* happens.
- $P(D|\theta)$
 - likelihood function(尤度関数)
 - interpretation: likelihood of D under θ .
- *P*(*θ*)
 - prior probability(事前確率).
 - interpretation: a general degree of belief in θ .

Usefulness of Bayes' theorem

Current knowledge:

Updated knowledge:





Affected	Unaffected
罹患	非罹患
0.001%	99.999%

You are diagnosed positive.

Question 1: Do you believe that you are affected?

Negative 10% D i а Negative 80% g n Positive 90% 0 S i S Positive 20%

Affected	Unaffected
罹患	非罹患
0.001%	99.999%

You are diagnosed positive.

Question 2: What's the probability that you are affected?

Luckily we have statistical data: A = Affected U = Unaffected P = Positive N = Negavive $D = \{P, N\}$: random variable for diagnose $R = \{A, U\}$: random variable for real state

$$P(R = A) = 0.00001$$

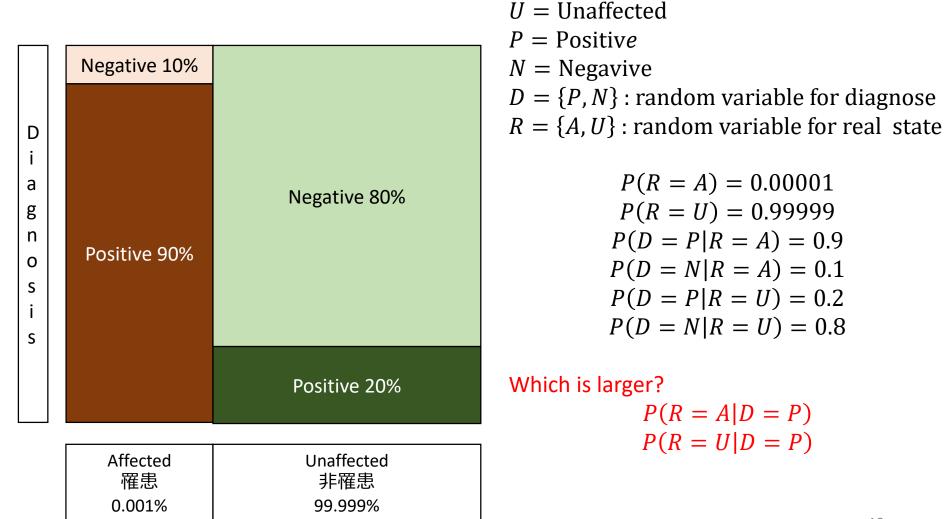
$$P(R = U) = 0.999999$$

$$P(D = P|R = A) = 0.9$$

$$P(D = N|R = A) = 0.1$$

$$P(D = P|R = U) = 0.2$$

$$P(D = N|R = U) = 0.8$$



P(R = A) = 0.00001 P(R = U) = 0.999999 P(D = P | R = A) = 0.9 P(D = N | R = A) = 0.1 P(D = P | R = U) = 0.2P(D = N | R = U) = 0.8

Using Bayes' theorem

$$P(R = A|D = P) = \frac{P(D = P|R = A)P(R = A)}{P(D = P)}$$

 $=\frac{0.9\cdot 0.00001}{P(D=P)}=\frac{0.000009}{P(D=P)}$

$$P(R = U|D = P) = \frac{P(D = P|R = U)P(R = U)}{P(D = P)}$$

$$=\frac{0.2 \cdot 0.99999}{P(D=P)} \approx \frac{0.2}{P(D=P)}$$

Bayesian updating

- θ: probability of getting the head of a coin when it is flipped.
- Evaluate the value of θ as posterior probabilities!
- Likelihood function:
 - Bernoulli (ベルヌー イ) distribution with parameter θ
 - *H*: Head
 - *T* : Tail
 - $p(H|\theta) = \theta$
 - $p(T|\theta) = 1 \theta$

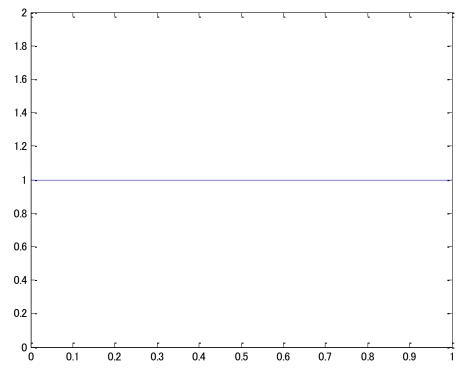
Initial step of Bayesian updating

- No prior knowledge, assume a prior
- It is assumed $p(\theta) = constant.$

 $\therefore p(\theta) = 1$

p is a uniform distribution.

Current (initial) prior distribution $p(\theta) = 1$



This means we have no information on θ .

Suppose we have event D_1 : the head appeared

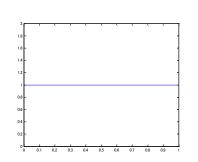
Find the posterior distribution $p(\theta|D_1)$ $p(\theta|D_1) \propto p(H|\theta)p(\theta) = \theta \times 1 = \theta$

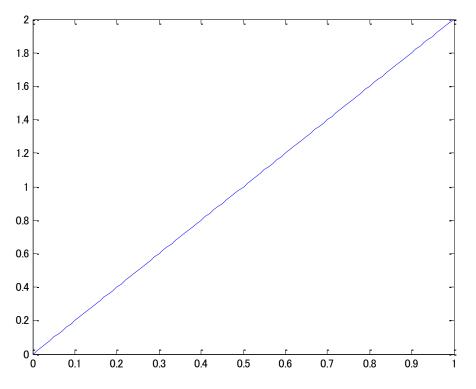
Normalization:
$$\int_{0}^{1} p(H|\theta)p(\theta) d\theta = \int_{0}^{1} \theta d\theta = \left[\frac{1}{2}\theta^{2}\right]_{0}^{1} = \frac{1}{2}$$

We have

 $p(\theta|D_1) = 2\theta.$

Posterior distribution $p(\theta|D_1) = 2\theta$





Reflecting D_1 : the head appeared, the higher θ is, the higher the probability is

Suppose we have event *D*₂: the head appeared

 $p(\theta|D_2, D_1)$ $\propto p(D_2|\theta) p(\theta|D_1)$ $= p(H|\theta)p(\theta|D_1)$ $= \theta \times 2\theta = 2\theta^2$

The latest posterior distribution, $p(\theta|D_1)$ is used as the prior distribution in this step because it is the best knowledge of θ . Normalization: $\int_{0}^{1} 2\theta^{2} d\theta = \left[\frac{2}{3}\theta^{3}\right]_{0}^{1} = \frac{2}{3}$

Thus, we have

$$p(\theta|D_2, D_1)$$

$$= \frac{p(D_2|\theta)p(\theta|D_1)}{p(D_2|D_1)} = 3\theta^2$$

Posterior distribution $p(\theta | D_2, D_1) = 3\theta^2$ 2.5 2 1.5 1 0.5 0 0.2 0.5 0.7 í٥ 0.1 0.3 0.4 0.6 0.8 0.9

This graph looks reasonable because we had $D_1 = D_2 = head$.

Suppose we have event D_3 : the tail appeared

Find the posterior $p(\theta | D_3, D_2, D_1)$

 $p(\theta|D_3, D_2, D_1)$ $\propto p(D_3|\theta)p(\theta|D_2, D_1)$ $= p(T|\theta)p(\theta|D_2, D_1)$ $= (1 - \theta) \times 3\theta^2$

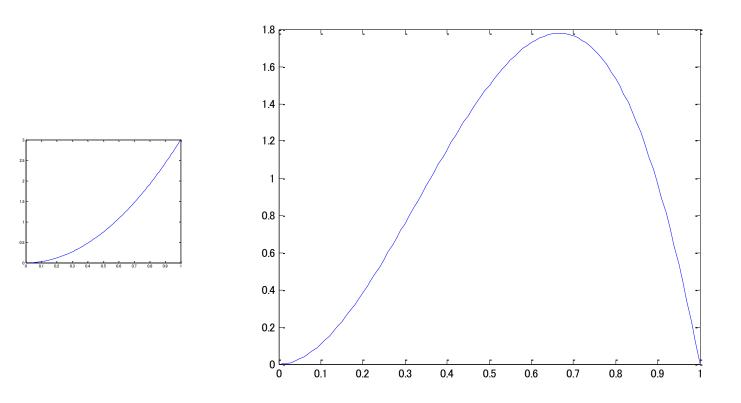
Normalization:

$$\int_{0}^{1} (1-\theta) \times 3\theta^{2} \, d\theta = \left[\theta^{3} - \frac{3}{4}\theta^{4}\right]_{0}^{1} = \frac{1}{4}$$

We have

$$p(\theta|D_3, D_2, D_1) = 12(1-\theta) \times \theta^2.$$

Posterior distribution $p(\theta | D_3, D_2, D_1) = 12(1 - \theta) \times \theta^2$



Let $f(\theta) = 12(1-\theta)\theta^2 = 12(\theta^2 - \theta^3)$. $f'(\theta) = 12(2\theta - 3\theta^2) = 12\theta(2 - 3\theta)$. $f'(\theta) = 0 \Leftrightarrow \theta = 0, \frac{2}{3}$

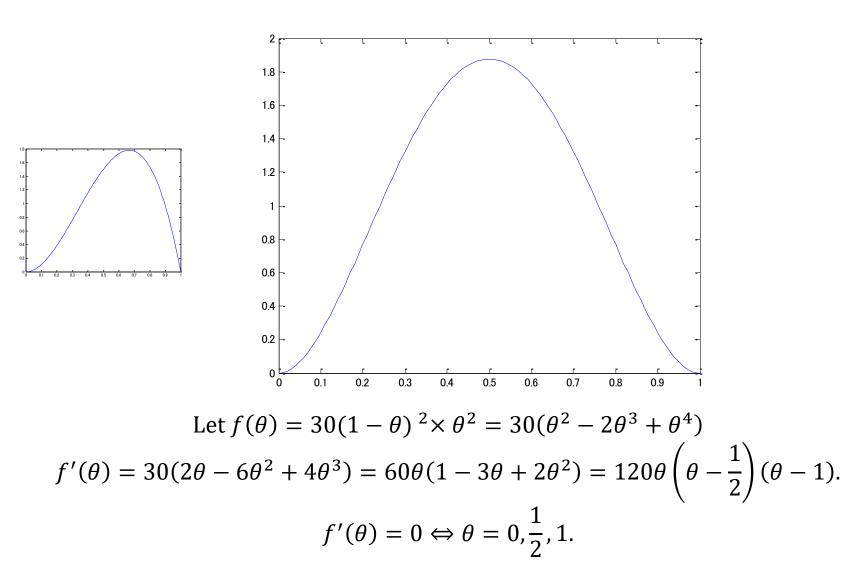
The fact that the maximum value of the posterior is given at $\theta = \frac{2}{3}$ coincides with the current observations: H, H, T.

Suppose we have event D4: the tail appeared

Find the posterior $p(\theta|D_4, D_3, D_2, D_1)$ $p(\theta|D_4, D_3, D_2, D_1)$ $\propto p(D_4|\theta)p(\theta|D_3, D_2, D_1)$ $= p(T|\theta)p(\theta|D_3, D_2, D_1)$ $= (1 - \theta) \times 12(1 - \theta) \times \theta^2$

After normalizing it, we have $p(\theta | D_4, D_3, D_2, D_1) = 30(1 - \theta)^2 \times \theta^2$.

Posterior distribution $p(\theta | D_4, D_3, D_2, D_1) = 30(1 - \theta)^2 \times \theta^2$



Data: H H T T

