Development of Dyeing Pattern Simulator

(IPA Mitoh project: Final accomplishment report 2010/2/21)

Yuki Morimoto

Similun desu!

Similundesu is?

Handcraft dyeing

- -Traditional, unique
 - Difficult to design
 - Difficult to make

Simulation by PC

- 1. Pattern generation readily
- 2. Simulation for real dyeing
- 3. Promoting culture

Yuzen

Batik

Shibori

Made by me (non-expert)

expert

Same Kumo shibori

Name: "Similundesu"

- I love "Utsurun desu"
 - Comic book
 - Means "It infect"
 - "Similundesu" means"It diffuse"
- Global: "Similundesu"

• Short name: "Similun"

"Similundesu" Dyeing pattern simulator

Basic CG tech for visual simulation of dyeing

Achieve!

Variable dyeing tech

Development of its application software

Creation time: 5 min

Similun desu.

Target

- 1. Pattern generation readily
- 2. Simulation for real dyeing
- 3. Promoting culture (our aims)
- New computer graphics
- Non-expert for dyeing
- Designer
- Schools
- People who is curious about traditional culture

Similundesu.

Rerated works

research

software

service

Watercolor[Curtis 1997], Chinese Ink[Chu 2005], Batik[Wyvill 2004]

水彩画風フィルタ Adobe Photoshop

Art Brush
Adobe Illustrator

No dyeing pattern simulators

Extraction of stencil from design data

Armonics Co., Ltd.

Similun desu.

Difficulties

- No 3D cloth structure in the related works
- Folded and woven Complicated cloth geometry
- Simultaneous physical phenomenon (dye transfer)
- Real dyeing tech. is varied
- Design by user
- Handmade and geometric factors
- World first! dyeing pattern simulator

Dyeing (Top: Yuzen, Bottom: Shibori)

1. Prepare 2. Resist 3. Give dye 4. Dye transfer #Dyeing pattern

Cloth, dye, etc

Glue

Draw

Fold, bind, stitch, etc

Dipdyeing

Diffusion, adsorption

Dyeing (Top: Yuzen, Bottom: Shibori)

1. Prepare 2. Resist 3. Give dye 4. Dye transfer #Dyeing pattern

Dyeing pattern simulator Similundesu

Dyeing tech

Similundesu.

1. Weave

2. Fold

3. Draw

Physical factor

4. Simulation <dye transfer>

<Demo>

Introduction & making a pattern bellow

Nui shibori: stitched and diped into dyebath (We assume wrinkles are small folds)

Dyeing pattern simulator Similundesu

Our result

Read dyed stuff

Comparison of Nui shibori

Correspondence between

our simulator & real process

①布準備

②防染する

③染料付与 ④染料移動

2. Fold 縫い・折り・読込

3. Draw 4. Simulation

Press · Cover · Dye

Basic physical dyeing model

Samples

Results with various tortuosity, porosity, and adsorption coefficient.

Results with different weaves.

Basic physical dyeing model

Seikaiha pattern

2D distributions of dye and resist, its result, and real dyed pattern [video]

How to make Seikaiha

- 1. Fold a cloth
- 2. Stitch along to the blue dots in the left figure, and resist both wide sides of the folded cloth
- 3. Dip it into dye

Dye transfer model

Dye Transfer Model

- Diffusion Term
 - With our Diffusion Graph (new proposal)
 - f(x, t)= diffusion dye concentration

Dye supply Term

- With our Dye Supply Map (new proposal)
- $\alpha 0$ = user specified, $\alpha(x)$ = dye supply map

$$g_1(\mathbf{x}, f) = \begin{cases} \alpha_0 \alpha(\mathbf{x}) & \text{if } \alpha(\mathbf{x}) - f(\mathbf{x}, t) > 0. \\ 0 & \text{Otherwise,} \end{cases}$$

Absorption Term

- With Dyeing theories
- $g_2(\mathbf{x}, f) = \begin{cases} \beta f(\mathbf{x}, t) & \text{if } h(\mathbf{x}, t) < a_d(\mathbf{x}, f). \\ 0 & \text{Otherwise,} \end{cases}$ β = user specified value, h(x, t)= absorption concentration,
- ad(x, f)= adsorption model defined as theories,
- Cd= capacity of diffusion concentration,
- Ca= capacity of adsorption concentration.

$$\frac{\partial h(\mathbf{x},t)}{\partial t} = g_2(\mathbf{x},f) \frac{C_d(\mathbf{x})}{C_d(\mathbf{x})}$$

Discretize the eq. according to the cloth geometry

Dye supply map for dip-dyeing

Dipdyeing

Outside parts exposed to dyebath

3D geometry
2D distribution
Broken geometry can be simulated.

Fold function 1: ORIPA

: free editor for development view of Origami

Fold function 2: Sequential fold

User specify lines to fold cloth sequentially

3. User specify a side to fold

Fold function 3: Stitch

Voronoi diagram

Fold function 3: Stitch

Generate 3D geometry by a user specified stitched line

Development of appli.

- Speeding up
 - Simplify some parts of physically-based calculation
 - Develop UI and add some functions

Unify its window and control

Development of appli.

- Develop UI and add some functions
 - -<Demo video>

Output result

<Video>

Top) Kumo shibori Center) Seikaiha Bottom) Itajime

Simulation

Real

How to make

Future (Web appli)

- Meaning
 - Dyed patterns are all unique.
 - Promotion of traditional culture.

Future

Local folding

Mixing colors

Improving UI

Open to the public

Conclusion

We achieve the new pattern generation by interactive editing between 2D/3D models of cloth deformation linked with simulation

Archievement

- No 3D cloth structure in the related works
- Folded and woven Complicated cloth geometry
- Simultaneous physical phenomenon (dye transfer)
- Real dyeing tech. is varied
- Design by user
- Handmade and geometric factors
- World first! dyeing pattern simulator

